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Flows with variable viscosity: an asymptotic model
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Abstract. Introducing a variable dynamic viscosity coefficient in the Navier equations for an incompressible fluid of
small viscosity (Re > 1, where Re is the classical Reynolds number), we exhibit a three-layer asymptotic model: ideal
fluid layer, boundary layer and lower viscous layer. Surprisingly we find that the interaction between the boundary
layer and the lower viscous layer is realized only starting with the second-order approximation. We give the full
mathematical formulation of the corresponding boundary-layer problem, for the second approximation, with the
new boundary conditions obtained by matching from the first-order lower viscous layer, of which the thickness is
O(1/Re).

As an application of this three-layer asymptotic model we solve completely the classical Blasius problem. In this
case the expression for the skin friction coefficient shows that the classical Blasius value is multiplied by a positive
term, directly linked to the variability of the dynamic viscosity coefficient.

1. Introduction

We consider steady, two-dimensional flow past a realistic body of nonvanishing thickness.
For definiteness we may envisage an airfoil spanning the test section of a wind tunnel with
plane walls, so that the flow would be uniform in the absence of the airfoil. In any case the
body is assumed to be solid, with an impermeable surface. Its shape will define a fixed
reference length (L,), and hence a Reynolds number (Re) based on that, so that a
nondimensional formulation is possible from the start. Let u be the dimensionless velocity
and p the dimensionless pressure.

A rational approach is to assume that, for a fluid of small viscosity, the flow is one
differing appreciably from that of an ideal fluid only in the vicinity of the body surface. For
that reason it is convenient to use curvilinear, orthogonal coordinates, usually denoted by s
and n, such that the body surface is the line n =0. A regular system of such coordinates
certainly exists, in any case in a sufficiently small neighborhood of the body surface,
provided that the body surface has no corner. A formulation of Navier equations in such
coordinates is found in Goldstein ([1], p. 119). It is convenient to measure s along the body
surface from the stagnation point that must be anticipated near the rounded nose of a
realistic body, and to begin with it is desirable to exclude a neighborhood of the point
s = n =0 from consideration. It is similarly desirable to exclude a neighborhood of the tail of
the body.

Since n measures normal distance from the body surface, we write

d 0
u=urt+vuv, V=h(s)£'r+%v, €))
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with A(s) =[1 + K(s)n] "', where K(s) is the curvature of the body surface; K(s) and its first
derivative dK/ds are bounded (or, in any case, K(s)/Re'>—0 and Re 'dK/ds—0 as
Re— ).

We start from the Navier equations in dimensionless form:

Vou=0,
(u-V)u+ Vp = Ez{p,(n)Vzu + 3—’; [g—: + Vv]} , 2)
where'
pu(n) =1+ Z(n/A(e)), (3)

with fi(®) =0, A(e) < ¢ and £ = Re”'’>. We shall see that A(g) = ¢ and the thickness of the
lower viscous layer is O(Re ™ '). The case where A(g)> ¢ is more subtle and it requires the
application of the homogenization technique for the microscopic description related to

p(n/A(e)).

2. The associated three limiting processes

The first limiting process is the usual limit of the exact solution of (2), with (3) and boundary
condition

u=0 on n=90 4)
as ¢ — 0 for fixed s and n. In this case we search for an asymptotic representation of the flow:

W=yt edy v, U=yt ED, Foor,  p=poteEp tec. (5)

As usual, we get to leading order the classical Euler equations for u,, v, and p,, while to
next order for u,, v; and p, we have the linearized perturbation equations relative to the
Euler-preceding equations (see, for instance, Zeytounian [4], p. 40).

The second limiting process is the inner limit of the exact solution as a function of s and
A= nle, as e—0 for fixed s and 7. In this case, instead of (5), write:

u=1dy+ei, +---, v=—g0,+ €0, + -, p=p,tep, +---. (6)
For &, and 0, we have the classical Prandtl boundary-layer equations and the following

relations are obtained:

" With dimensions we have: fi* = p,i(n*/1,), where I, is a characteristic length for the microscopic variation of
the dynamic viscosity coefficient. If L, is the reference length associated with the shape of the body, then
A(e)=I,/L,<e<1.
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imd,=0,  lim d, = i,(s, 0) = u,(s),

n—0 Ao (7)
o dp,, 1 d - “[du,, od} .

Do =p0(S, ()) =p08(5) s ————d;) + 5 d—S uzo) =0, U](S, 0) = J'O [_ds - —a—; dA

after the matching of (6) with (5).
For i, and §, we obtain the boundary-layer equations of the second approximation,
according to Van Dyke [3], where we have curvature effects,

oG, v, ..

—_— —= = — ” N

os T on K g5 (A0

~ A A~ 2. A Py

d . o, . ou, 8p, a0, {M o, . . .dp, 8u0}

= (i Ny, =+ - —l =K 0G0, A 0 (8

s (doy) + 0, an Yt n s IRz (s)1 Aitky PR L A e Y (8)
and matching gives

lim i, = (.00 = 4, (), B =P(s.0)+ KGs) [, 3. ©)

For the time being we don’t have the possibility to take into account the influence of the
microscopic coefficient f(n/A) and for that reason we envisage a tentative third limiting
process: ¢ —0 for fixed s and 7 = n/A, with the following asymptotic representation of the
flow:

u:gaﬁo(s’ﬁ)—}—---’ vszl;O(S’ﬁ)—'_“" p=ﬁ0(s,ﬁ)+sﬁ1(s,ﬁ)+---, (10)

with constants a and 8.
If we assume that A(e) =¢" A> 1, then for A = 8 — a we obtain for i,, 0, and p, the
following system of equations in the Jower viscous layer:

o, Y, ~
—(.,?Jrai,{’:(), Po = Poe($) »
0 au, (1)
LI P ﬂ} -
2 u+ i S} <o,
and we have, according to (4), the conditions
Uy(s,0) = 0,(s,0)=0. (12)

3. Interaction between the boundary layer and the lower viscous layer

The solution of the lower viscous layer problem, (11), (12), is easy, and particularly we get

ip(s. 1) = Ag(s) [, (1 + ) e, (13)

Now it is necessary to elucidate the behavior of (13) as i— . Through a straightforward
argument we obtain
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Gy(s, i)~ Ag(s){A+ U+ -} asA—o, (14)
where
ﬁ:;:J:{—1+(1+ﬂ(t))_1}dt<oo, (15)

and we see that this imposes a constraint on g(7). But, according to (6), in the boundary
layer we have also the following behavior for u:

~

u~iys,0)+n Oﬁ:0+sﬁl(s,0)+-~ as A—0. (16)

dA

Therefore, taking into account (10) and the relation 7 = ¢*~'/i, we verify that the matching
between (10) and (6) is possible, according to (14) and (16), if

a=1, A=a+1=2 and B=3, (17)

and in this case we obtain the following relations

R ou
uO(S7O)=O’ 14()(5)= 6ﬁ0 ri=0’
f,(s,0)=Ay(s) Uy, 0,(5,0)=0, (18)

6,(5,0)=0.

From (18) we see that the classical laminar boundary-layer problem, for &, and o,, is not
affected by the appearance of the lower viscous layer. This leading-order lower viscous layer
is active at the level of equations (8) for 4, and ¢,, with (9), in such a way that the boundary
conditions on 7/ = 0 for equations (8) are

i,(5,0)= A,(s)U;,  ,(5,0)=0, (19)

where A(s) is defined by the second relation of (18), while U is a constant according to
(15).

As A(g) = &" = ¢ =Re !, the leading-order lower viscous layer, governed by the equa-
tions (11), is a thin layer (within the boundary layer) with thickness O(Re™"). But for the
time being we don’t know if the boundary-layer problem (8) with (9) and (19) is well posed
or not. It seems that the proof of uniqueness of a solution in C*(0, ) is not easy! Therefore,
in the following section, we consider the particular case of the classical Blasius problem.

4. Application to the Blasius problem*

In this case we have for the stream function ¥(x, y), such that ¥ =d¢/dy and v = —d¢¥/x,
the following three asymptotic representations:

* A basic problem of the theory of fluids of small viscosity is that of steady flow past a solid flat plate placed
edgewise in a uniform stream. More precisely, the plate is understood to be a haif-plane, say y =0, 0 <x <o (see
Meyer [2], Chapter 4).
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y=y—eBReal (Vx+iy)+---,
U=eVEf(m+efitm+---, (20)
g =ex"UfUOVF(F) + -,

where
B=1728, $=yle, y=yle&, n=x"%. (21)

The function f,(n) must satisfy the classical Blasius equation and for F(y) we have the
following relation:

F(¥) =K Uu (1+ a@)™ dt} da . (22)

0
Finally, we obtain the following linear boundary-value problem for f,(n):

2f T+ ffi+fofi=0,
HO)=0,  fiO)=af50),  fi(=)=0, (23)

with*
a=[ @0+ a0 dr.
The solution of (23) is easy and we find that
£in) = e fatm) + Constant [ { sy [ (pruny~ auf ar. (24)

Unfortunately we do not have the possibility to determine the constant in (24), since the
condition at infinity, fi() = 0, is automatically satisfied. Then for the determination of the
“Constant” in the solution (24) we have to consider the matching between the first and the
second representation of (20) and we find the following complementary condition:**

fi(=)=0. (25)
With (25), the solution of (23), according to (24), is simply
fim) = a, fo(m) - (26)

Now we are able to write a uniform asymptotic representation in the vicinity of y =0 for
the horizontal velocity,

* We note that 4 ,(x) = f2(0)x™*"* according to the second relation of (18) and the second representation of (20).
** For the Blasius problem the tables of f{(n) show that fi(>¢) = 0 and this last condition results from the matching
with the uniform flow.



98 S. Godts and R.Kh. Zeytounian
u=29yldy =fi(ylevx)— ef(0)/vx
+ e[ faO)VF'(yle?) + fi(y/evE)]/VE + O(e) . (27)

Therefore, we obtain for the skin friction coefficient
C, =2fi(0)Re,. *[1+ (1 + £(0) '] (28)

where Re,. is the relevant local Reynolds number for the flat plate (x*=Lyx is a
dimensional variable). In the particular case when (i(¢) = exp(— wt), w >0, we derive for C,
according to (28), the following expression,

C, =3Re,."” fi(0). (29)

5. Conclusion

If we take into account the complementary condition (25), derived for the Blasius problem
in Section 4, then it seems that the uniqueness of a solution of the linear boundary-layer
problem (8), (9), (19) is possible if we suppose that this last solution satisfies also the
following behavior at infinity:*

lim — = lim —2 , (30)

which follows from the matching between (5) and (6) for du/an.
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* From the classical Prandtl boundary-layer equations, for i, and @,, we can see that: if the relations (7) are really
satisfied, then 8t/ 0 and 8°i1,/9A> —0 as i — =



