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Abstract. Introducing a variable dynamic viscosity coefficient in the Navier equations for an incompressible fluid of 
small viscosity (Re >> 1, where Re is the classical Reynolds number), we exhibit a three-layer asymptotic model: ideal 
fluid layer, boundary layer and lower viscous layer. Surprisingly we find that the interaction between the boundary 
layer and the lower viscous layer is realized only starting with the second-order approximation. We give the full 
mathematical formulation of the corresponding boundary-layer problem, for the second approximation, with the 
new boundary conditions obtained by matching from the first-order lower viscous layer, of which the thickness is 
O(1/Re). 

As an application of this three-layer asymptotic model we solve completely the classical Blasius problem. In this 
case the expression for the skin friction coefficient shows that the classical Blasius value is multiplied by a positive 
term, directly linked to the variability of the dynamic viscosity coefficient. 

1. Introduct ion  

W e  cons ide r  s t eady ,  t w o - d i m e n s i o n a l  flow pas t  a real is t ic  b o d y  of  nonvan i sh ing  th ickness .  

F o r  def in i teness  we m a y  env isage  an airfoi l  spann ing  the  test  sec t ion  of  a wind  tunne l  wi th  

p l ane  walls ,  so tha t  the  flow wou ld  be un i fo rm  in the  absence  of  the  airfoi l .  In  any case the  

b o d y  is a s s u m e d  to be  sol id ,  wi th  an i m p e r m e a b l e  surface.  Its shape  will def ine  a fixed 

r e f e rence  length  (L0) ,  and  hence  a R e y n o l d s  n u m b e r  (Re )  b a s e d  on tha t ,  so tha t  a 

n o n d i m e n s i o n a l  f o r m u l a t i o n  is poss ib le  f rom the  s tar t .  Le t  u be the  d imens ion le s s  ve loc i ty  

and  p the  d imens ion l e s s  p ressure .  

A r a t iona l  a p p r o a c h  is to a s sume  tha t ,  for  a fluid of  smal l  viscosi ty ,  the  flow is one  

d i f fer ing  a p p r e c i a b l y  f rom tha t  of  an idea l  fluid only  in the  vicini ty  of  the  b o d y  surface.  F o r  

tha t  r eason  it is c o n v e n i e n t  to use curv i l inea r ,  o r t h o g o n a l  coo rd ina t e s ,  usual ly  d e n o t e d  by s 

and  n, such tha t  the  b o d y  sur face  is the  l ine n = 0. A regu la r  sys tem of  such c o o r d i n a t e s  

ce r t a in ly  exists ,  in any  case  in a suff icient ly small  n e i g h b o r h o o d  of  the  b o d y  sur face ,  

p r o v i d e d  tha t  the  b o d y  sur face  has  no co rne r .  A f o r m u l a t i o n  of  Nav ie r  equa t i ons  in such 

c o o r d i n a t e s  is found  in G o l d s t e i n  ([1], p. 119). I t  is conven i en t  to m e a s u r e  s a long  the  b o d y  

surface  f rom the  s t agna t ion  po in t  tha t  mus t  be  an t i c ipa t ed  nea r  the  r o u n d e d  nose of  a 

real is t ic  b o d y ,  and  to begin  wi th  it is des i r ab le  to exc lude  a n e i g h b o r h o o d  of  the  po in t  

s = n = 0 f rom cons ide ra t i on .  I t  is s imi lar ly  des i r ab le  to exc lude  a n e i g h b o r h o o d  of  the  tai l  of  

the  body .  

Since n m e a s u r e s  n o r m a l  d i s t ance  f rom the  b o d y  surface ,  we wr i te  

0 0 
u = u~- + v v ,  v = h(s) ~ ~- + 7n v ,  (1) 
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with h(s)  = [1 + K(s)n] 1, w h e r e  K(s)  is the  cu rva tu re  of  the  body  surface;  K(s)  and  its first 
de r iva t ive  d K / d s  are  b o u n d e d  (or,  in any  case,  K(s)/Real2--->O and  R e  l dK/ds- ->O as 

Re--> ~) .  

We  s tar t  f rom the  N a v i e r  equa t i ons  in d imens ion les s  fo rm:  

V ' u = 0 ,  

( u ' V ) u + V p = e  2 / ~ ( n ) V Z u + - ~ -  n ~ n + V V  , (2)  

where* 

~ ( n )  = 1 + t T ( n / A ( e ) ) ,  (3)  

wi th  t~(w) = 0, A(e)  ~ e and  e = R e  -1/2. We shall  see  tha t  A(e)  = e 2 and  the th ickness  of  the  

lower  viscous l aye r  is O ( R e - ~ ) .  T h e  case w h e r e  A(e)  >> e is m o r e  subt le  and  it r equ i res  the  

app l i ca t ion  of  the  h o m o g e n i z a t i o n  t echn ique  for  the  mic roscop ic  desc r ip t ion  r e l a t ed  to 

#2(n/A(e)). 

2. The associated three limiting processes 

T h e f i r s t  l imi t ing p rocess  is the  usual  l imit  of  the  exac t  so lu t ion  of  (2) ,  wi th  (3) and  b o u n d a r y  

cond i t i on  

u = O  on n = O  (4) 

as e---> 0 f o r f i x e d  s and  n. In  this  case  we sea rch  for  an a sympto t i c  r e p r e s e n t a t i o n  of  the  flow: 

u = ~0 + e g l  + . . .  , V = g o + e 6 1  + . . .  , p = f i o + e f i ~ +  . . .  . (5)  

A s  usual ,  we get  to l ead ing  o r d e r  the  classical  E u l e r  equa t ions  for  ~0, v0 and  rio, while  to 

nex t  o r d e r  for  u l ,  v I and  fil we  have  the  l inea r i zed  p e r t u r b a t i o n  equa t ions  re la t ive  to the  

E u l e r - p r e c e d i n g  equa t i ons  (see,  for  ins tance ,  Z e y t o u n i a n  [4], p. 40). 

T h e  second l imi t ing p rocess  is the  inner  l imit  of  the  exact  so lu t ion  as a func t ion  of  s and  

h = n /e ,  as e--->0 for  f ixed s and  h. In  this case,  i n s t ead  of  (5) ,  wri te :  

u =/~0 + e/~l + "" " , v = ev I + e2/32 + • • • , P =/30 + eft1 + "" " • (6)  

F o r  t~ 0 and  /3I w e  have  the  classical  P r and t l  b o u n d a r y - l a y e r  equa t ions  and  the fo l lowing 

re la t ions  are  o b t a i n e d :  

* With dimensions we have: 12"= ~ofi(n*/lo), where l o is a characteristic length for the microscopic variation of 
the dynamic viscosity coefficient. If L o is the reference length associated with the shape of the body, then 
A(e) = lo/L o ~ e ~ 1. 
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lim 6 0 = 0 ,  
n ~ 0  

l i m a  0 = t20(s, 0) = l/leo(S), 

Po = rio( S , O) = Poe(S), 
dpo e 1 d (U~o) = 0  
ds + 2-dss 

at~ rdu °  as 
(7) 

after the matching of (6) with (5).  
For t~ 1 and 32 we obtain the boundary-layer equations of the second approximation, 

according to Van Dyke [3], where we have curvature effects, 

O/~ I a U  2 O 
+ - - -  K(s)  (hO~) 

a s  a ~ -~n ' 

O~ ° dpeo OUo } O OUo OUl Ot~l 02t2~ - K(s)  ng*o - Uo61 + h + (8) 
a s  (,~,,a,) + o2 - 5 7  + o, -a-a- + o-7 a,~ ~ ~ s  ~ T s  - ~ -  ' 

and matching gives 

L m ~2 dh (9) lim tJ l = fit(s, O) = b / e l ( S ) ,  e l  = r i l (  S, O) -t- K(s) u o . 

For the time being we don't  have the possibility to take into account the influence of the 
microscopic coefficient ~ ( n / A )  and for that reason we envisage a tentative third limiting 
process: e - + 0  for fixed s and ,7= n/A ,  with the following asymptotic representation of the 
flow: 

u = ~ Uo(S, ,7) + . . . ,  v = ~e6o(S,  ,7) + . . . ,  p =/7o(S, ,7) + ,~/71(s, ,7) + . . . ,  (1o) 

with constants c~ and/3. 
If we assume that A(e) = e*, a > 1, then for a =/3 - a we obtain for fro, 60 and/70 the 

following system of equations in the lower viscous layer: 

afr o a~, 
- -  + . = 0 £ = P o e ( S )  OS On ' 

a g  [1 + ~( '7)]  0,7 J = 0 ,  

(11) 

and we have, according to (4), the conditions 

fr0(s, 0) = 60(s, 0) = 0 .  (12) 

3. Interaction between the boundary layer and the lower viscous layer 

The solution of the lower viscous layer problem, (11), (12), is easy, and particularly we get 

fr°(s' '7) = A°(s) j , i  (1 +/~(t)) -1 d t .  (13) 

Now it is necessary to elucidate the behavior of (13) as '7---> 00. Through a straightforward 
argument we obtain 
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tTo(S , 17) ~ Ao(s){ff + 5 o + . . - }  as ff---~ ~ ,  

where 

5 o = ( ~  ( - 1  + (1 +/2( t ) )  -1} d t < ~ ,  
a o  

(14) 

(15) 

and we see that this imposes a constraint on fi(rT). But,  according to (6), in the boundary 
layer we have also the following behavior for u: 

0r0 
-~- e r l ( S  , O)  -~- - - .  as h--+O (16) u r 0 ( s , 0 )  + t~ - ~  ~=o 

A - i n  Therefore ,  taking into account (10) and the relation h = e n, we verify that the matching 
between (10) and (6) is possible, according to (14) and (16), if 

a = l ,  A = a + l = 2  and ~ = 3 ,  (17) 

and in this case we obtain the following relations 

0r0 
rio(s,O)=O, A ° ( s ) = - ~  n=o' 

rl(s, O) = Ao(s ) 5 0 ,  /~l(S, O) = O ,  

t)2(s, O) = 0 

(18) 

From (18) we see that the classical laminar boundary-layer problem, for r 0 and 61, is not 
affected by the appearance of the lower viscous layer. This leading-order lower viscous layer 
is active at the level of equations (8) for r 1 and 02, with (9), in such a way that the boundary 
conditions on h - - 0  for equations (8) are 

fi,(s, O) = Ao(s)Uo, 62(s, O) = O, (19) 

where Ao(s ) is defined by the second relation of (18), while 5 o is a constant according to 
(15). 

As A ( e )  = e a = e 2 = Re -1, the leading-order lower viscous layer, governed by the equa- 
tions (11), is a thin layer (within the boundary layer) with thickness O ( R e - I ) .  But for the 
time being we don' t  know if the boundary-layer problem (8) with (9) and (19) is well posed 
or not. It seems that the proof  of uniqueness of a solution in C~(0, ~) is not easy! Therefore ,  
in the following section, we consider the particular case of the classical Blasius problem. 

4. Application to the Blasius problem* 

In this case we have for the stream function ~b(x, y), such that u = O0/Oy and v = -0~ /0x ,  
the following three asymptotic representations: 

* A basic problem of the theory of fluids of small viscosity is that of steady flow past a solid fiat plate placed 
edgewise in a uniform stream. More precisely, the plate is understood to be a half-plane, say y = 0, 0 < x < ~ (see 
Meyer [2], Chapter 4). 



~O = y -  e/3 R e a l ( V ~ + i y )  + - - - ,  

= L ( n )  + (7 )  + ' " ,  
= e 3 x - ' / 2 f ~ ( O ) F ( f )  + . . . ,  

where  

= 1.7208,  
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(20) 

y, = y / e ,  ~ =  y l e  2 , ~ = X - I / 2 y  . (21) 

The  funct ion fo(r/) must  satisfy the classical Blasius equa t ion  and for  F ( f )  we have the 
following relat ion:  

fo {fo ' } F ( f )  = (1 +/7.(t))  -~ dt  d a .  (22) 

Finally, we obtain the following l inear boundary-va lue  p rob lem for  f l (r / ) :  

t t t  ¢r +f0fl +f;f  =0,  

fl(O) = O, f~(O) = aof~(O ) , f~(~) = O, (23) 

with* 

% = - f o  ~ /2(t)(1 +/~.(t)) -1 d t .  

The  solut ion of  (23) is easy and we find that  

f l ( r / )  = % f ~ ( r / ) +  Cons tan t  fo r {f~( t ) fo~(f~(u))  - '  du} d t .  (24) 

Unfo r tuna te ly  we do not  have the possibility to de te rmine  the constant  in (24),  since the 
condi t ion at infinity, f~(~) = 0, is automat ical ly  satisfied. Then  for  the de te rmina t ion  of  the 
" C o n s t a n t "  in the solut ion (24) we have to consider  the matching be tween  the first and the 
second represen ta t ion  of (20) and we find the following complementary  condition:** 

f~'(¢¢) = 0 .  (25) 

With (25),  the solut ion of  (23),  according to (24),  is simply 

f~(r/) = % f ~ ( r / ) .  (26) 

Now we are able to write a un i form asymptot ic  represen ta t ion  in the vicinity of  y = 0 for  
the hor izonta l  velocity,  

* We note that A 0(x) = fo(O)x -~12 according to the second relation of (18) and the second representation of (20). 
** For the Blasius problem the tables of f0(rt) show that f~(:~) = 0 and this last condition results from the matching 
with the uniform flow. 
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u = Oq,/Oy = f o ( y / e x / Y )  - e f t (O) /x / -Y  

+ e [ f ~ ( O ) F ' ( y / e  2) + f ~ ( y / e x / Y ) ] / x / - Y  + 0 @ 2 ) .  (27) 

T h e r e f o r e ,  we obta in  for  the skin frict ion coefficient 

Cf = 2f~(0) Re,-,1/2[1 + (1 + ~ (0 ) )  - t ]  (28) 

where  Re** is the re levant  local Reyno lds  n u m b e r  for  the flat p la te  (x * =  Lox  is a 
d imens iona l  var iable) .  In  the  par t icular  case when  t2(0 = e x p ( - w t ) ,  w > 0, we derive for  Cs, 
according  to (28),  the fol lowing express ion ,  

C s = 3 R e x  ,1/2f~(0) . (29) 

5.  C o n c l u s i o n  

If  we take  into account  the c o m p l e m e n t a r y  condi t ion (25),  der ived for  the Blasius p r o b l e m  
in Sect ion 4, then  it seems  tha t  the un iqueness  of  a solut ion of  the l inear  bounda ry - l aye r  
p r o b l e m  (8),  (9),  (19) is possible  if we suppose  that  this last solut ion satisfies also the 
fol lowing behav io r  at infinity:* 

Off I 0u0 
lim = lim - -  ( 3 0 )  
~ Oh n-,o On ' 

which follows f rom the match ing  be tween  (5) and (6) for  Ou/On. 
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* From the classical Prandtl boundary-layer equations, for fi0 and t3~, we can see that: if the relations (7) are really 
satisfied, then Otto~Oh and 02 fio/ Oh2--~ O as fi---~. 


